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Real Numbers 
 

 The least upper bound 

- Let B be any subset of R. B is bounded above if there is a k  R such that x  k for all 

x  B. 

- A real number, k  R is a unique least upper bound of B, i.e. k = LUB(B), if 

(1) k is an upper bound of B. 

(2) For every y < k, y is not an upper bound of B. 

- LUB axiom says that every nonempty subset of R that is bounded above has a least 

upper bound. 

- LUB(B) may or may not belong to B. (Ex;  : 1 ,B y y x x    R ) 

- Note that LUB( ) LUB( )A B A B   . 

 

 The greatest lower bound 

- Let B be any subset of R. If B is bounded below, the greatest lower bound, GLB(B) is 

similarly defined. 

 

 Supremum and infimum 

- For any subset B of R, the supremum is defined as 

  

LUB( ),  and bounded above

sup : + ,  and not bounded above

,

B B

B B

B

 
   
 

. 

- For any subset C of R, the infimum is defined as 

  

GLB( ),  and bounded below

inf : ,  and not bounded below

,

C C

C C

C

 
   
 

. 

 

 Bolzano-Weierstrass theorem 

- If xn is a bounded sequence of real numbers, i.e. na x b      , then there is 

a converging subsequence, 
knx  whose limit lies in [a, b]. 
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Vector Space 
 

 Field 

- A field is a set F on which two operations of addition and multiplication are defined with 

the usual properties. 

- An ordered field is a field F with a relation <. 

- Example: rational numbers, real numbers, complex numbers 

 

 Vector space and subspace 

- A nonempty set V is a vector space over a field F if the following properties hold: 

  There is an operation called vector addition, + such that 

   (1) Closure: , ,V V   u v u v  

   (2) Commutative law: , ,V    u v u v v u  

   (3) Associative law: , , , ( ) ( )V      u v w u v w u v w  

   (4) Additive identity: ,V V      0 u u 0 u  

   (5) Additive inverse: , ( ) ( )V       u u u u 0  and ( )u  is unique. 

  There is an operation called scalar multiplication such that 

   (1) Closure: and ,a F V a V    u u  

   (2) Associative law: , and , ( ) ( )a b F V a b ab    u u u  

   (3) First distributive law: and , , ( )a F V a a a      u v u v u v  

   (4) Second distributive law y: , and , ( )a b F V a b a b      u u u u  

   (5) Multiplicative identity of F: ,1V  u u u . 

- A subset W of a vector space V over F is a subspace of V iff 

and , ,a F W a W     u v u v . W itself is a vector space. 

 

 Span, linear independence, and basis 

- Let V be a vector space over a field F. Suppose  and G may not be a subspace 

and may not be a finite set. The set of all linear combinations of elements of G is 

denoted by span G, i.e., 

   span G := 
1

:  is any positive integer, , and 
n

k k k k
k

a n G a F


     
 
 v v . 

 Note that 

  (1) G  span G. 

  (2) span G is a subspace of V. 

  (3) If a subspace W contains G, then W contains span G. 

G V
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- For an arbitrary subset G of V, G is linearly independent if 

   1 2
1

,   =  implies 0
n

k k k n
k

G a a a a


     v v 0  . 

 If G is not linearly independent, G is linearly dependent. Note that if G0 , G is 

linearly dependent. 

- If   1

n

k k
v  are linaerly independent, no vector kv  can be expressed as a linear 

combination of other vectors in the set. 

- Let W be a subspace of V. If there exists a finite subset G  W, such that span G = W, 

then W is finite-dimensional. If span G = W and G is linearly independent, G is a basis 

for W. 

- If G =  1

n

k k
v  is a basis for W, 

1

n

k k
k

a W


  x v x  and   1

n

k k
a


 is unique. 

- If W is finite-dimensional, then any basis of W contains the same number, n of linearly 

independent vectors. We say that n is the dimension of W (i.e. dimW = n). If dimW = n 

and  1 2, , , n Wt t t  are linearly independent, then  1 2span , , , nt t t = W. 
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Mapping 
 

 Function and mapping 

- A function is a triple (X, Y, f), also denoted by f: X  Y, where X and Y are specified sets 

of inputs and outputs, respectively.  

- f is a rule or mapping that associates to each x  X, a unique element f(x)  Y. 

- The set X is the domain of f and the set Y is the co-domain of f.  

- The range of f is the set  ( ) :f x x X . 

- Two functions 1 1 1( , , )X Y f  and 2 2 2( , , )X Y f  are equal iff  

  1 2 1 2 1 2 1 2, ,  and ( ) ( )X X Y Y f x f x x X X      . 

 

 Vector space of mappings 

Let V be a vector space over F and U be an arbitrary set. 

- x: U  V is a mapping if there is a rule that assigns to each u  U, an element x(u)  V. 

- We let X be the set of all mappings from U into V. Two mappings, x and y in X are equal 

iff ( ) ( )x u y u u U   . 

- X is itself a vector space with the following definitions 

  (1) Addition of mappings is defined as 

   ( )( ) : ( ) ( ) ,  and x y u x u y u x y X u U       , 

  (2) Additive identity, ( ) :  z u u U  0 , 

  (3) Additive inverse, ( )( ) : ( ) x u x u u U     , 

  (4) Scalar multiplication, ( )( ) : ( )  and ax u a x u u U a F     . 

 

 Linear functional 

- Let V be a vector spave over F. A mapping : V  F is called a linear functional if  
  ( ) ( ) ( ),  , ,a a a F V        1 2 1 2 1 2v v v v v v . 

- Given a set of vectors,  1 2, , , n Vt t t , if there exists a set of linear functionals, 

 1 2, , , n    such that 
1,  if 

( )
0,  if j i ij

i j

i j
 


   

t , then  1 2, , , nt t t  is linearly 

independent. 
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Metric Space 
 

 Metric space 

- Let X be a nonempty set and define a mapping : X  X  [0, ) with the follwoing 

properties: 

  (1) (x, y)  0 and (x, y) = 0 iff x = y 

  (2) (x, y) = (y, x) 

  (3) (x, z)  (x, y) + (y, z). 

 Then,  is called a metric. The pair (X, ) or X is a metric space. 

- We define a ball as  ( , ) ( ) : :  ( , ) , for some rB x r B x y X x y r x X     . 

 

 Convergence 

- A sequence nx X  converges to x  X if 0,  ( , )nx x      for all sufficiently 

large n (i.e., there exists an integer N such that the condition holds for all n > N). We 

denote this as nx x  or lim n
n

x x


 . 

- A sequence nx X  converges to x  X if ( , ), 0nx B x      for all sufficiently 

large n. 

 

- A set E in a metric space is closed iff every converging sequence of points in E converges 

to a point in E. 

- (Approximation) If x E , there is a sequence nx E  and nx x . In orther words, 

if x E , then there is a point y  E such that (x, y) <  for any  > 0. 

 

 Subsequence 
- Let 1 2, ,n n   be integers such that kn   as k  . 

- If nx X  is a sequence, 
knx  is a subsequence of nx . 

 

 Sequential compactness 
- A subset D is sequentially compact if for every sequence nx D , there is a converging 
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subsequence 
knx  whose limit lies in D. 

- From Bolzano-Weierstrass, [a, b] with a b      is sequentially compact. 

- Sequentially compact subset of a metric space must be closed. 

 

 Cauchy sequence 
- A sequence nx  in a metric space is Cauchy if ( , ) , 0n mx x      and for all 

sufficiently large n and m. 

- In a Cauchy sequence, all the points in the tail of the sequence are close together. 

- Every converging sequence is Cauchy. The converse is not true. 

- A Cauchy sequence is bounded. 

 

 Complete space 

- If every Cauchy sequence of a metric space converges to a point in the space, the space 

is complete. 

- If nx  is a Cuachy sequence in a metric space, and if 
knx is a converging subsequence 

of nx , then nx  converges to the same limit as 
knx . 

- The real numbers  with the metric ( , )x y x y    is a complete metric space. 

- The space d is complete under the usual Euclidian distance, i.e.  

  
2( ) ( )

1

( , )
d

i i

i

x y


 x y . 

- Any closed and bounded subset of d is sequentially compact. 

- The spaces of complex numbers  and d are complete. Any closed and bounded subset 

of d is sequentially compact. 

 

 Continuity 

- Let (X, ) and (Y, m) be metric spaces. Let f: X  Y be a function. 

- (Continuity of a point) A function f is continuous at a point x0 if  
  0 0 00, ( , ) , ( , ) ( ( ), ( ))X m f f               x x x x x x , or  

  0 0 00, ( , ) , ( , ) ( ) ( ( ), )mX B f B f              x x x x x x . 

- (Continuity on a set) A function f is continuous on a subset D  X if f is continuous at 
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each point 0 Dx . 

- A function f is continuous at a point x0  for every sequence 0 0, ( ) ( )n nf f x x x x . 

In order words, f is convergence preserving iff f is continuous. 

- (Uniform continuity) A function f is uniformly continuous on a subset D  X if  
  0 0 00, ( ) 0 , , ( , ) ( ( ), ( ))D m f f                x x x x x x . 

 

 Compact sets 
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Topology 
 

Let X be a metric space with a metric . 

 

 Ball 

- A ball is defined as  ( , ) ( ) : :  ( , ) , rB x r B x y X x y r x X     . 

 

 Open set 

- A set U  X is open if ,  0 with ( , )x U B x U      . 

- A set U  X is not open if 0,   with ( , )x U B x U      . 

- The whole space X and  are both open. 

- The set B(x, r) is open, i.e. it is an open ball. 

 

 Closed set 

- A set F  X is closed if its complement  : :cF x X x F    is open. 

- X , , and  ( , ) : ( , )cB x r y X x y r    are all closed sets. 

- Every (possibly infinite) union of open sets is an open set.  

- Every intersection of finite number of open sets is an open set. 

 

 Topological space 

- Let X be a nonempty set and   be a collection of subsets of X.   is called a topology 

for X if 

  (1)     and X   

  (2) If U   , then  U    

  (3) If U1   and U2   , then U  U   . 

- The pair (X,  ) or X is called a topological space. 

- The elements of   are open sets. 

- A set F is closed if Fc   .  

 

 Properties of topological space 

- A set U is open  for every x  U, there is an open set containing x, say Ox, with Ox  

U. 
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- The closure of a set E is 
:  and
 is closed

:
C E C
C

E C


   and E E . E  is the smallest closed set 

containing E. 

- A set E is closed  E E . 

- A point x is an accumulation point (or cluster point or limit point) of a set E if for every 

open set containing x, say Ox, there is a point y  x with y  Ox  E. We let E' denote 

the set of accumulation points of E. The point x may or may not be in E. 

- E is closed  E'  E. 

- 'E E E   

- The boundary of E is E  and : cE E E   . 

- The interior of E is oE and  :
c

o cE E . oE  is an open set with oE E  and 

| o cE E E E E    . 
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Normed Vector Space 
 

Let F denote  or  and V be a vector space over F. 

 

 Norm 

- ||  || is a norm if 

  (1) 0 , V    v v  and 0v  iff v = 0, 

  (2) , ,a a V a F    v v v , and 

  (3) , , V    v w v w v w  (triangular inequality). 

- Every normed vector space is a metric space with ( , )  v w v w . 

- A sequence nv  converges to v (i.e., nv v ) iff 0n  v v . 

-     v w v w v w . 

 

 Banach space 

- A complete normed vector space is called Banach space. 

 

 Examples of norm 

- The p-norm on V = n or n. Let 1 2( , , , )nv v v v , then 

  

1

1

1

, 1
:

max ,

pn
p

k
kp

k
k n

v p

v p



 

       
  


v . 

- When p = 2, we call it Euclidean norm. 

- The uniform norm. Let U be any set and let F =  or . Let X denote the vector space 

of mappings from U into F. Let Xb denote the set of bounded mappings, i.e. 

  : : sup ( )b
u U

X x X x u


     
 

. Note that if U is a finite set, then X = Xb. The uniform 
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norm of x  Xb is : sup ( )
u U

x x u


 . Xb with the uniform norm is a Banach space. 

 

 The p spaces 

- Let U = {1, 2, 3, ...}. For k  U, we write kx  instead of x(k). Then, X denotes the set 

of all real- or complex-valued sequences. For 1  p < , let  

  
1

: :
pp

k
k

x X x




     
 

 , 

 and set 

   : : sup k
k

x X x     .  

- p spaces is equipped with the corresponding p-norm. 

 

 Projections 

- Let V be a normed vector space and G be a subset of V. If there exists a vector ˆ Gv  

such that ˆ , ,G V     v v v w w v , then v̂  is a projection of v onto G. 

- A projection may not exist (for example, if G is open) and may not be unique (for 

example, if G is not convex). 

- Projections exist when G is a closed ball in an arbitrary, possibly infinite-dimensional, 

normed vector space. 

 

 Finite-dimensional subspaces 

- Let W be a finite-dimensional normed vector space or a finite-dimensional subspace of 

a normed vector space. W may be a subspace of a larger infinite-dimensional space V. 

Then, 

  (1) W is complete, i.e., W is a Banach space. 

  (2) Every closed and bounded subset G of W is (sequentially) compact. 

 

 Projections onto closed finite-dimensional subsets 

- If G is an nonempty closed and bounded subset of a finite-dimensional subspace W of a 

larger normed vector space V, then the projection of every v  V onto G always exists. 

- If W is a finite-dimensional subspace of a larger normed vector space V, then the 

projection of any v  V onto W always exists. 
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Inner Product Spaces 
 

Let F denote  or  and V be a vector space over F. For a  , a  denotes the complex 

conjugate of a. 

 

 Inner product space (pre-Hilbert space) 

- ,   is an inner product on V if the following properties hold: 

  (1) 0 , , V    v v v  and , 0 iff  v v v 0 , 

  (2) , , , , V  v w w v v w  

  (3) , , , , , , , ,a b a b a b F V      u v w u w v w u v w . 

- ,v w  is in general complex number but ,v v  is always real. 

- , , ,a b a b  w u v w u w v  

- , 0v 0 . If , 0, V  v w w , then v = 0. 

 

 Hilbert space 

- A complete inner product space is Hilbert space. 

 

 Norm on an inner product space 

- Given any inner product, 
1 2

: ,v v v  defines a norm on V. 

 

 Parallogram equality 

-  2 2 2 2
2    u v u v u v  

 

 Cauchy-Schwarz inequality 

- , u v u v  
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- If v  0, then equality holds iff u = av for some a  F. 

- Angle between u and v, 1 ,
( , ) cos   

u v
u v

u v
 and , cosu v u v  

  (a) 0    u and v are aligned  , u v u v , v u  for some 0   

  (b)     u and v are opposed  ,  u v u v , v u  for some 0   

  (c) 2     u and v are orthogonal  , 0u v , v u  

 

 Orthogonality 

- A collection of vectors G is (mutually) orthogonal if , 0, ,  with G   u v u v u v . 

- If, in addition, 1, G  u u , then they are orthonormal. 

- Orthonormal set of vectors are linearly independent. The converse may not be true. 

 

 Some identities 

- (Parallelogram law) In any inner product space,  2 2 2 2
2    u v u v u v . 

- (Polarization identity) In a complex inner product space,  

  
2 2 2 2

4 , j j j j       u v u v u v u v u v . 

 

 The orthogonality principle (OP) 

- Let V be an inner product space. Let W be a subspace of V. Fix any v  V. Then, a vector 

Wv  has the property that 

  , W    v v v w w  iff , 0, W   v v w w . 

 Furthermore, there is at most one element Wv  satisfying the condition. 

- If Wv  exists, it is unique. But it may not exist. 

- If Wv  exists, then v  is the orthogonal projection of v onto W. 

- Note that 

  (1) 
2 2 2  v v v v   
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  (2) 
2 2 2  v v v v   

  (3) v v  

 

 Projections onto finite-dimensional spaces 

- Let V be an inner product space. Let W be a finite-dimensional subspace of V. Then,  

    1 2 1 2, , , span , , ,n n W  w w w w w w   and OP is as follows. 

  , W    v v v w w  iff , 0, 1, 2, ,i i n  v v w  . 

- If v  exists, 
1

n

j j
j

c


 v w  (i.e. Wv ). 

- Note that  

  (1) 
1

, , , 1, 2, ,
n

i j i j
j

c i n


 v w w w  , or equivalently 

  (2) Ac b  where  1 1: , , : , , , , , : , ,
T T

ij j i n nA c c     w w b v w v w c  . 

And, A is nonsingular if  1 2, , , nw w w  is linearly independent. 

- If  1 2, , , nw w w  is orthonormal, then A = I and ,i ic  v w , and thus 

  
1

,
n

j j
j

 v v w w  and 
22

1

,
n

j
j

 v v w  

- Bessel's inequality for an orthonomal basis is 
2 2

1

,
n

j
j

   v w v . 

- Since v v  iff Wv , 
22

1

, ,
n

j
j

W


  v v w v . 

 

 Orthogonal complement 

- For any subset W of an inner product space V, we define the orthogonal complement of 

W as 

   : : , 0,W V W     v w v w  

- W   is a subspace of V. 

- W   is a closed set. 
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-  W W
 . If W is a closed subspace of a Hilbert space,  W W

 . 

- If W is an arbitrary subset of a Hilbert space,   span W W
  . 

 

 Convex set 

- Let X be an arbitrary vector space over  or . A subset C  X is convex if 
  (1 ) , , , [0,1]C C        x y x y . 

- In a normed vector space, open balls are convex. 

- A subspace is a convex set. 

 

 Projection theorem 

- Let C be a closed, convex subset of a Hilbert space X. Then, for every x  X, there exists 

the unique Cx  such that , C    x x x y y . 

- If M is a closed subspace of a Hilbert space X, then ( ), X    x x x x x   where 

 Mx  and M  x x . 

 

 Sums and direct sums of subspaces 

- If U and W are two subspaces of a vector space V, their sum is 

   : :  and U W U W    u w u w . 

- If every element in U + W has a unique representation, their sum becomes the direct 

sum as U W . 

-    iff U W U W U W     0 . 

- If M is a closed subspace of a Hilber space X, then X M M   . 

 


